Differential Mitochondrial Requirements for Radially and Non-radially Migrating Cortical Neurons: Implications for Mitochondrial Disorders

Graphical Abstract

Highlights

- Mitochondria in cortical interneurons are motile during migration
- Mitochondria are stationary in migrating cortical projection neurons
- Oxidative phosphorylation defects disrupt cortical interneuron migration
- Interneurons lose polarity when oxidative phosphorylation is perturbed

Authors

Correspondence

sande@mail.med.upenn.edu (S.A.A.), jagolden@partners.org (J.A.G.)

In Brief

Mitochondrial disorders frequently result in neurological dysfunction, but the causes of pathogenesis are uncertain. Lin-Hendel et al. show that mitochondrial dysfunction during neurodevelopment selectively disrupts cortical interneuron migration and not projection neuron migration. They further show a specific dependence on oxidative phosphorylation of interneuron migration.
Differential Mitochondrial Requirements for Radially and Non-radially Migrating Cortical Neurons: Implications for Mitochondrial Disorders

INTRODUCTION

Mitochondrial diseases (MDs) are the most common inherited metabolic disorder, with an estimated prevalence of 1:5,000 (Schaefer et al., 2004). Although MDs consist of a spectrum of disorders that can involve single or multisystem presentations, neurological symptoms are common clinical characteristics. In recent years, clinical, genetic, and biochemical studies have revealed an emerging link between mitochondrial dysfunction and neurodevelopmental disorders, including intellectual disability (ID) (Valenti et al., 2014), childhood epilepsy (Chevallier et al., 2014), and autism spectrum disorder (ASD) (Rossignol and Frye, 2012). Interestingly, these conditions have also been associated with interneuron dysfunction (Marín, 2012). The correlation between MDs and childhood neurological disorders raises the question as to whether interneuron development is particularly dependent on mitochondrial function.

SUMMARY

Mitochondrial dysfunction has been increasingly linked to neurodevelopmental disorders such as intellectual disability, childhood epilepsy, and autism spectrum disorder, conditions also associated with cortical GABAergic interneuron dysfunction. Although interneurons have some of the highest metabolic demands in the postnatal brain, the importance of mitochondria during interneuron development is unknown. We find that interneuron migration from the basal forebrain to the neocortex is highly sensitive to perturbations in oxidative phosphorylation. Both pharmacologic and genetic inhibition of adenine nucleotide transferase 1 (Ant1) disrupts the non-radial migration of interneurons, but not the radial migration of cortical projection neurons. The selective dependence of cortical interneuron migration on oxidative phosphorylation may be a mechanistic pathway upon which multiple developmental and metabolic pathologies converge.
Figure 1. Mitochondrial Localization in Migrating Neurons

(A) Schemata of interneuron (IN: 1–3) morphologies displayed during migration.

(B) Confocal immunofluorescence (IF) images of mitochondria in migrating INs in vitro displaying varying localization patterns according to morphology. Cytosol (GFP), mitochondria (Tom20), and nuclei (DAPI). Scale bar, 10 µm.

(C) Quantification of clustering of mitochondria in subcellular locations. Region I, trailing process (TP); II, overlapping nucleus (Nuc); III, 5 µm anterior to nucleus (5 µm AN); IV, cytoplasmic bleb (bleb); V, leading process (LP); and VI, leading process tip (LPT). Clustering varied markedly between IN morphologies. IN morphology 1 clustered in III (*p = 0.039), IN morphology 2 clustered in IV (*p = 0.02), while IN morphology 3 clustered in I and II (*p = 0.0343 and ***p = 0.0002). Error bars represent median with 25th–75th percentiles ± min/max value of percent total mitochondrial area (%TMA) normalized to region’s percent of total cell area (%TCA). n = 15 cells each type; Friedmann’s test with Dunn’s correction.

(D) Schemata of pyramidal neuron (PN) migration morphology.

(legend continued on next page)
suggest that interneuron polarity during migration is particularly sensitive to disruptions in metabolism, and that OXPHOS is required for normal migration of INs but not PNs. Our results also imply that the symptomatic manifestations of mitochondrial dysfunction and related conditions, including hypoxic injury, on cerebral cortical function may be secondary to their selective impact on cortical interneuron migration.

RESULTS

Mitochondria Are Highly Dynamic during Interneuron Migration

To examine the role of mitochondria in non-radial versus radial migration, we first sought to characterize the localization of mitochondria in migrating INs and PNs. We classified mediolateral ganglionic eminence (MGE)-derived cells migrating in explant cultures into three morphological classes corresponding to distinct phases of their migration: leading process extension, forward movement of the centrosome, and nucleokinesis/trailing process retraction (Marín et al., 2006). Morphology 1 cells were defined to have slender, tapered leading processes; morphology 2 cells have a bleb or thickening of the leading process; and morphology 3 cells have a clear trailing process (Figure 1A).

Each subgroup displayed a distinct distribution of mitochondria (Figure 1B). In morphology 1, mitochondria were concentrated immediately anterior to the nucleus (Figure 1C; 49 ± 4, % total mitochondrial area [TMA] ± SEM, 5-fold greater %TMA% total cell area [TCA], p < 0.05) (Bellion et al., 2005; Golden et al., 1997). In morphology 2 cells, mitochondria were concentrated in the cytoplasmic bleb (Figure 1C; 71 ± 2, % TMA ± SEM, 3.9-fold greater %TMA/%TCA than other areas, p < 0.05), while in morphology 3, the mitochondria were aggregated in the trailing process and posterior nuclear area (Figure 1C, 29 ± 4, % TMA ± SEM, 39 ± 5 TMA ± SEM respectively, 1.7-fold greater %TMA/%TCA than other areas, p < 0.05) (Bellion et al., 2005).

Although these independent clustering behaviors have been noted in the literature, mitochondrial dynamics during migration have not been studied. To evaluate the subcellular localization of mitochondria in relation to the morphological migratory phases, we next performed time-lapse imaging of fluorescently labeled mitochondria in migrating interneurons. Interestingly, mitochondria displayed consistent positional reorganization during migration, as their subcellular location changed in concert with the morphology of the migrating cell (Figures 1G and 1H; Movie S1). The mitochondrial localization and changes in location observed in the three IN morphologies were confirmed by live imaging of mitochondria in whole-brain-slice cultures from embryonic day 13.5 (E13.5) embryos (Figure S1; Movie S2).

The localization of mitochondria in migrating INs was ranked according to morphology as matching or not matching the localization observed in migrating dissociated INs and found to be highly correlated (Figure S1A).

In contrast to migrating INs, migrating PNs maintain a relatively consistent migratory morphology after leaving their multipolar phase in the ventricular and subventricular zones (Figure 1D and 1I) (Nooter et al., 2004). During radial migration in the cortical plate, mitochondria were found primarily anterior to the nucleus and in the leading process, showing little change in regional localization (Figures 1E, 1F, 1L, and 1J; Movie S3). These data reveal that the intracellular position, and changes in location, of mitochondrial of INs and PNs are clearly distinguishable and suggest that there may be differences in energy requirements between these two neuronal cell populations during development.

Oxidative Phosphorylation Is Necessary for Normal IN Migration, but Not for Radial Migration

To determine whether migrating INs and PNs have distinct energetic requirements, we studied their need for mitochondrially generated ATP in explant and slice cultures. Cells generate ATP through glycolysis in the cytosol and oxidative phosphorylation (OXPHOS) in the mitochondria. To test whether OXPHOS is necessary for normal neuronal migration, we examined cell movement after blocking OXPHOS with either oligomycin or bongkrekic acid (BA). Oligomycin (Olig) blocks mitochondrial production of ATP by inhibiting the ATP synthase (Kulka and Lardy, 1970), while BA prevents the translocation of ATP across the inner mitochondrial membrane by inhibiting the adenine nucleotide translocator isoforms 1 (Ant1, also known as Slc25a4) and 2 (Ant2 also known as Slc25a5) (Henderson and Lardy, 1970). IN migration was exquisitely sensitive to Olig treatment, where 0.02 μM reduced IN migration by 78% (Figure S2A; Movie S4). Treating INs with 2.5 μM BA reduced IN migration by 50% (p ≤ 0.001) (Figure 2A; Movie S5). These cells showed no reduction in somal translocation (Figure 2C; not statistically significant but trending toward slower) but a significant increase in the time spent paused (Figure 2D). Interestingly, treated cells exhibited elongated trailing processes (Figures 2B and 2F) as well as a higher frequency of trailing processes (Figure 2E) and for more time (Figure 2G) than controls. Furthermore, at low BA concentrations, migrating INs exhibit a 10-fold increase in direction changes (Figure 2H). BA also resulted in significant reduction in the leading process length (Figure 2I). The

(E) Confocal IF images of mitochondria in representative migrating PN. Cytosol (GFP), mitochondria (MitoDsRed), and nuclei (DAPI). Scale bar, 10 μm.
(F) Quantification of clustering mitochondria in migrating PNs, Region I: TP; II: Nuc; III: 5 μm AN; IV: cytoplasmic bleb (bleb); V: LP; VI: leading process tip LPT. *p = 0.0327, **p = 0.0064, and ***p < 0.0001, n = 15 cells; Friedman’s test with Dunn’s correction.
(G) Time-lapse imaging of a migrating Dlx5/6Cre;Slc25a4/5tm1Wls IN in vitro (cytosol, GFP; mitochondria, MitoTracker Red CMXRos) show intracellular movement of mitochondria. 1 frame = 10 min. Scale bar, 10 μm. See also Movie S2.
(H) Quantification of INs displaying a extensive movement of mitochondrial through the cell versus those where the mitochondria remain confined to one compartment. The majority of INs showed this movement of mitochondria throughout the cell during migration. p < 0.0001, unpaired t test, n = 5 independent cultures, 200 cells. Values represent mean ± SEM.
(I) Live time-lapse imaging of a migrating PN (cytosol, GFP; mitochondria, MitoDsRed). 1 frame = 10 min. Scale bar, 10 μm. See also Movie S3.
(J) Quantification of PNs movement of mitochondrial through the cell versus those where the mitochondria remain confined to one compartment. Intracellular movement of mitochondria through PNs was essentially not observed. p = 0.002, Mann-Whitney, n = 6 independent cultures, 82 cells. Values represent mean ± SEM.
leading processes also branched less frequently and the branch lengths were significantly reduced (Figures 2J and 2K).

To determine whether OXPHOS is sufficient to supply energy for IN migration, we removed glucose (GLUC) from the medium or inhibited glycolysis with 2-deoxyglucose (2-DG) and provided the OXPHOS substrate pyruvate (PYR). Alternatively, we substituted GLUC for galactose (GAL). GLUC deprivation reduced migration by \(\frac{1}{2} \) (Figure S2C), while inhibition with 2-DG reduced migration by \(\frac{1}{3} \) (Figure S2C). When INs are supplemented with PYR or GAL, ATP generation is dependent on OXPHOS alone (Adeva-Andany et al., 2014; Marroquin et al., 2007). Both PYR and GAL were sufficient to fully rescue IN migration under conditions of glycolysis inhibition, and this ability to sustain migration was abrogated with addition of sub-threshold doses of BA (Figure S2C). Therefore, OXPHOS is both necessary and sufficient for normal IN migration.

The requirement for OXPHOS in neuronal migration was further tested using slice cultures where both non-radially migrating INs, and radially migrating PNs, could be studied simultaneously. We utilized Dlx5/6CreERT2 mice in which the INs are genetically labeled with EGFP. At E14, a DsRed expression construct was electroporated into Dlx5/6CreERT2 embryos to label (red) in E16 brain slices treated with vehicle or 20 μM BA. See also Movie S5. CP, cortical plate; IZ, intermediate zone; VZ, ventricular zone. Scale bar, 150 μm. (M) IN migration rates decreased in slices treated with BA (p = 0.0023, n = 6 individuals, 20 INs each) whereas PNs were unaffected (p > 0.05, n = 6 individuals, > 15 PNs each). Unpaired t test with Welch’s correction, mean ± SEM.

(M) IN migration rates decreased in slices treated with BA (p = 0.0023, n = 6 individuals, 20 INs each) whereas PNs were unaffected (p > 0.05, n = 6 individuals, > 15 PNs each). Unpaired t test with Welch’s correction, mean ± SEM.
the progenitors of radially migrating PNs. Embryos were harvested at E16, and cortical slices from individuals were treated with BA. Remarkably, BA treatment reduced IN migration rates, whereas PNs were unaffected (Figures 2L and 2M; Movie S6; IN: 0.289 ± 0.06 μm/min decrease, p < 0.002; PN: 0.03 ± 0.02 μm/min increase, p > 0.1). These data demonstrate that the non-radial migration of cortical interneurons is dependent on OXPHOS, while the radial migration of cortical projection neurons is either not or minimally OXPHOS dependent.

Selective Disruption of Non-radial IN Migration in Ant1 Mutants

We next sought to corroborate our pharmacologic data of the differential effects of OXPHOS on PN versus IN migration in mice lacking the Ant1 isoform. The genetic removal of Ant1 reduces the ATP flux from the mitochondria to the cytosol, and Ant1 is expressed in cortical neurons, including INs (Figures S3A and S3B; Graham et al., 1997; Lee et al., 2009; Levy et al., 2000).

To determine if loss of Ant1 disrupts IN migration in vivo, Ant1+/− and Ant1−/− brains were sectioned and stained for calbindin at E13.5 to detect a subset of migrating INs. On average, the leading edge of INs from wild-type brains migrated 15% percent farther than that of Ant1−/− brains (Figures 3A and 3B), and there was a 30% decrease in total migrating INs invading the cortex in Ant1−/− animals (Figure 3C). Additionally, Ant1−/− migrating INs displayed aberrant orientation of the leading process with 30% fewer cells oriented in the main migration path (Figures 3G and 3H). Interestingly, Ant1−/− INs had longer trailing processes in vivo (Figure 3D), a characteristic also seen in wild-type INs treated with BA in vitro (Figure 2C). Neither proliferation nor cell death in the MGE or cortex was impacted by loss of Ant1 (Figure 3E and 3F).

Figure 3. Interneuron Migration Is Reduced in Embryonic Ant1 Mutants
(A) At E13.5 migrating INs (labeled by calbindin immunohistochemistry) have not traveled as far in Ant1−/− brains compared to Ant1+/− brains. The white arrow indicates the leading migrating INs. Ant1+/+ served as the standardized control distance of 1.0 ± 0.02 with Ant1−/− IN migration showing on average 0.85 ± 0.02 relative distance units ± SEM or a 15% reduction, p < 0.0001. Scale bar, 200 μm.
(B) Quantification of relative distance of leading cells of migrating INs. ****p < 0.0001, n = 5 individuals, 25 cells each, Mann-Whitney test. Values represent median with interquartile range ± min/max.
(C) Quantification of relative INs in cortex; Ant1+/+ = 1.0 ± 0.06; Ant1−/− = 0.7 ± 0.04; normalized INs in cortex ± SEM, **p = 0.004, n = 5, unpaired t test with Welch’s correction.
(D) Ant1−/− INs in the cortex have increased trailing process (TP) length. Ant1+/+ = 1.1 ± 0.3; Ant1−/− = 5.2 ± 1.1 μm (SEM), *p = 0.022, n = 5 individuals, 25 cells each, unpaired t test with Welch’s correction.
(E) Proliferation in germinal ventricular zone (VZ), indicated by Ki67 immunostaining, was not impacted by loss of Ant1. Medial ganglionic eminence (MGE) and pallium (Ctx). Ant1+/+ versus Ant1−/− for each region, p = 0.286 for MGE, p = 0.309 for Ctx; n = 5 individuals, Mann-Whitney test. Values represent median, 25th–75th percentile ± min/max.
(F) Loss of Ant1 did not increase cell death, indicated by caspase-3, in the MGE and the ventral and dorsal pallium (V/D Ctx). Ant1+/+ versus Ant1−/− for each region, p > 0.99, n = 5 individuals, Kruskal-Wallis, Dunn’s correction. Values represent median, 25th%–75th percentile ± min/max.
(G) INs in cortex of Ant1−/− mice displayed abnormal leading process orientation. Arrowheads indicate misaligned INs. Scale bar, 75μm.
(H) Quantification of cortical IN leading process orientation into quadrants; Q1, dorsal; Q2, pial; Q3, ventral; and Q4, ventricular orientation. The average percent of IN oriented in Q1 for Ant1+/+ was 80 ± 4 and 50 ± 4; Ant1−/− (±SEM), ****p = 0.0001 and **p = 0.0069, n = 5, ANOVA with Sidak’s correction.
In contrast to the clear defects in IN migration, Ant1−/− PN migration was normal. E14.5 embryos were electroporated with pCAG-IG and cell positions assayed on E18.5. The loss of Ant1 did not alter radial migration (Figures S3A and S3B). To further assay the migration of PNs, we injected 5-ethynyl-2′-deoxyuridine (EdU) to pregnant dams on E14.5 and harvested the embryos on E18.5. Labeling for EdU (E14.5 injections mainly labeled outer layer neurons) and Tbr1 (a deeper layer neuronal marker) showed normal positioning of cortical neurons between Ant1+/+ and Ant1−/− brains (Figure S4C). Together, these data indicate that in marked contrast to the non-radial migration of cortical INs, Ant1 does not appear to affect the radial migration of PNs.

Loss of Ant1 Alters Centrosome Localization in Migrating Interneurons

To further examine the migration behaviors disrupting IN migration in Ant1−/− mutants, we crossed these mice to Dlx5/6CIG mice to genetically label forebrain GABAergic neurons. Live imaging of slices from Ant1−/− and littermate controls revealed an ~31% decrease in migration rates of GFP+ cells in the cortex (Figure 4E) and ~3.6-fold increases in direction changes (Figures 4D, 4F, and 4G; see also Movie S7). These data suggest an impaired ability of Ant1−/− INs to maintain polarity. To study this further, we examined centrosome localization in MGE explant cultures. In control INs, the centrosome localizes anterior to the nucleus or in the bleb of the leading edge of the nucleus, or even behind the nucleus (Figures 5A and 5B). To confirm this finding, we also assayed the localization of centrosome after BA. Similar to the findings in the Ant1−/−, BA-treated migrating INs also displayed a significant posterior positioning of the centrosome (Figures 5C and 5D). Taken together with the increased direction changes seen after either genetic or biochemical impairment in mitochondrial energetics, these results suggest that IN polarity is particularly sensitive to mitochondrial perturbation.

Figure 4. Abnormal Migration by Ant1−/− Interneurons

(A) MGE explants were cultured in vitro for 16 hr. Ant1−/− INs did not migrate out of the explant as far as controls.

(B) Quantification of relative distance of IN migration from explant showing a statistically significant difference in the distance migrated between Ant1−/− and Ant1+/+ INs. Ant1−/− is calculated as the normalized distance (1.0 ± 0.03) and Ant1+/+ was on average approximately 40% reduced (0.61 ± 0.08); normalized distance ± SEM, **p = 0.0034, n = 6, 50 cells each genotype, unpaired t test with Welch’s correction. Scale bar, 250 μm.

(C) Quantification of IN migration rates of wild-type and mutant INs. Ant1−/− IN migration rates had slower migration rates (**p < 0.0001) and were more sensitive to BA treatment compared to Ant1+/+ (**p < 0.001). Migration rates Ant1−/−: 0.42 ± 0.01; Ant1+/+: 0.24 ± 0.01; μm ± SEM, n = 5, 150 cells each condition, ANOVA with Bonferroni’s correction.

(D) Examples of migration path of GFP+ INs in slice culture (also see Movie S7). Dots, start; lines, paths. Scale bars, 150 μm.

(E) Ant1−/− INs in slices display decreased migration rates relative to control. The relative migration rate was compared between Ant1−/−: 0.94 ± 0.04 and Ant1+/+: 0.65 ± 0.04; relative migration rate ± SEM, ***p < 0.0001, n = 5, unpaired t test with Welch’s correction.

(F) Ant1−/− INs display increased direction changes. Ant1−/−: 0.07 ± 0.01; Ant1+/+: 0.25 ± 0.02; direction changes per cell/hr ± SEM, p < 0.0001, n = 5, unpaired t test with Welch’s correction.

(G) Frequency plot of IN direction changes; dark gray = Ant1+/+, light gray = Ant1−/−; ****p < 0.0001 and ***p = 0.0006, n = 5, two-way ANOVA with Sidak’s correction.
Our results reveal that migrating INs and PNs display major differences in mitochondrial localization. During IN migration, mitochondrial localization is highly dynamic, with the highest density of mitochondria appearing to move between the posterior trailing process, the region anterior to the nucleus, and the cytoplasmic bleb. In contrast, during PN migration, mitochondria are primarily restricted to the region anterior to the nucleus. We also found that inhibition of OXPHOS drastically decreased the migration rates of INs, but not PNs. These findings suggest that INs, unlike radially migrating PNs, are highly dependent on mitochondrial ATP production. The reduced migratory rates and increased direction changes by INs also suggest that the maintenance of polarity is an energetically vulnerable process and is required for normal IN development. These data link mitochondrial function to the prenatal development of a critical cerebral cortical neuronal subpopulation.

Few studies have addressed mitochondrial localization and trafficking in migrating neurons. Previous work has shown that Lis1, Tau 1, and DCX, genes that cause defects in radial migration and IN development, cause mislocalized and altered mitochondrial trafficking (Khalaf-Nazzal et al., 2013; Sapir et al., 2012; Yamada et al., 2009). Although this suggests that defects in mitochondrial localization may also impact PNs, each of these genes also regulates microtubule dynamics. Thus, in these models, it is unclear whether changes in mitochondrial localization contribute to the defects in radial migration or whether these genes have a direct impact on mitochondrial function. Our data address this issue by investigating mitochondrial localization in both PN and IN populations and by interfering directly with mitochondrial function. Although mitochondrial dysfunction in addition to other defects may contribute to abnormal radial migration, we provide clear evidence that INs are much more sensitive to OXPHOS deficits.

Mitochondrial contribution to neuronal metabolism has been largely studied in the context of the adult nervous system, focused on how loss of mitochondrial function results in neurodegeneration and cell death. Recent data have emphasized the importance of mitochondrial energetics in basic neurophysiology. For example, mitochondrial energetics are essential for interneuron regulation of gamma oscillations that are themselves associated with cognitive functions (Kann et al., 2014). However, few data exist on the earlier developmental requirements for mitochondrial OXPHOS. Several studies have indicated that regulation of mitochondrial metabolism impacts neurogenesis and differentiation (Bertholet et al., 2013; Wang et al., 2014), but the requirement for OXPHOS during neuronal migration had not been studied. Surin et al. suggested that glycolysis is a primary driver of embryonic neuronal metabolism of hippocampal cultures (Surin et al., 2012). Since interneurons comprise only ~6% of the neurons in hippocampal cultures (Benson et al., 1994), it is likely the measurements in this study were primarily representative of pyramidal neuron metabolism. This lack of active OXPHOS in embryonic pyramidal cells thus compliments our findings that PN migration is not impacted by OXPHOS inhibition. Our data clearly show that interneuron migration required OXPHOS and suggest that distinct neuronal populations have different metabolic requirements during development.

We found that Ant1 mutant INs exhibit changes in centrosome localization, increased length of the trailing process, and increased direction changes during IN migration. Mitochondria have been implicated in centrosome homeostasis in mitotic cells (Donthamsetty et al., 2014). Additionally, the mislocalization of centrosomes has also been observed in mice lacking mDia1 and 3, proteins of the formin family that regulate cytoskeletal dynamics via Rho-GTPases (Daou et al., 2014). Interestingly, IN migration is disrupted in these mutants, but radial migration is not (Shinohara et al., 2012). In this model, focus was on subventricular zone migration of interneurons to the olfactory bulb; thus, it is unclear whether there are additional phenotypic similarities exist between these models. The similarities in our phenotype and selective effect on INs suggest that the regulation of centrosomal position and actinomycin contractions within the trailing process are energetically vulnerable processes and warrant further investigation.

Patients with ASD, and particularly those with combined ASD, ID, and epilepsy, commonly have evidence of mitochondrial dysfunction (Rossignol and Frye, 2012). The manner by which
mitochondrial dysfunction contributes to these phenotypes is generally attributed to a deficiency in meeting ongoing neuronal metabolic demands or increased free radical production resulting in cell death. Our data provide clear evidence for a final common pathway into the pathogenesis of ASD, developmental epilepsies, and IDs. These clinical phenotypes associated with mitochondrial disorders may not solely arise from energetic deficits or the formation of free radicals during later neuronal function but may be secondary to abnormal IN development.

EXPERIMENTAL PROCEDURES

Mouse Strains

CD1 or Ddx5/6\(^{CIG}\) (Stenman et al., 2003) and Ant1\(^{-/-}\) mice on a C57BL6/NJ (Ronchi et al., 2013) of both sexes were used as indicated. The Institutional Animal Care and Use Committee at the Children’s Hospital of Philadelphia (Philadelphia, PA) approved all studies.

Brain Explant and Slice Cultures

Explant and slice cultures were generated from the indicated embryonic day mouse pups as previously described (Lysko et al., 2011, 2014).

Treatment Protocols

For inhibition of oxidative phosphorylation, explants were cultured for 24 hr in Dulbecco’s media (DM) with 35 mM glucose. Immediately prior to imaging, media was exchanged with DM with PBS vehicle, Oligo (Sigma), or BA (Enzo Life Sciences). We found a strain difference in response to treatment to BA. CD1 cells were treated with 0.5, 2.5, 5, and 50 mM BA, while Ant1\(^{-/-}\) and Ant1\(^{-/-}\) cells were treated with 0.5 mM BA. For glucose deprivation and inhibition experiments, explants were cultured for 24 hr in glucose-free DMEM (Invitrogen) plus N2 supplement (Gibco) with or without 10 mM sodium pyruvate (Sigma) or 5 mM galactose (Sigma), or 2.5 mM BA. For treatment with 2-DG, explants were cultured for 24 hr with 5 mM glucose DM supplemented with 500 \(\mu\)M 2-DG (Sigma), with or without 10 mM sodium pyruvate or 5 mM galactose \(\pm\) 0.5 mM BA.

Histology and Immunocytochemistry

Brains of E13.5, E16, or E18.5 embryos were processed for histology and immunohistochemistry as previously described (Lysko et al., 2011). Primary antibodies used included anti-calbindin D-28k (rabbit; Swant, 1:1,000), caspase-3 (rabbit; Abcam, 1:500), Ki67 (rabbit; Neomarkers, 1:300), anti-Tom-20 (rabbit; Santa Cruz Biotechnology, 1:500), and anti-GFP (chicken; Invitrogen, 1:2,000). Secondary antibodies included goat anti-rabbit-biotin (Vector Laboratories) followed by Streptavidin/Alexa Fluor 594 (Invitrogen) or anti-rabbit-Alexa Fluor 594 (Invitrogen) anti-anti-channel Alexa 488 (Invitrogen), all at 1:2,000. Nuclei were counterstained with DAPI.

Intrauterine Electroporations

Embryos at either E14 or E14.5 were electroporated in utero as previously described (Nasrallah et al., 2012) with the following constructs: pCAG-IG [Addgene 11150; 2 \(\mu\)g/ml], pCAG-DsRed [Addgene 11151; 2 \(\mu\)g/ml], pDsRed2-mito [MitoDsRed; Clontech 632421; 0.5 \(\mu\)g/ml]. For marking mitochondria in radially migrating neurons and slice BA treatments, embryos were electroporated at E14 and harvested 48 hr later. For assessing radial migration, embryos were electroporated at E14.5 and harvested at E18.5.

Live Marking of Mitochondria In Vitro

To image mitochondria in migrating INs, explants from Ddx5/6\(^{CIG}\) embryos were cultured for 24 hr. Prior to imaging, cells were treated with 100 nM Mitotracker Red CMXROS (Invitrogen) for 30 min in Opti-MEM (Invitrogen) with 10 mM glucose. Cells were then rinsed with PBS and supplied with fresh DM before imaging.

Microscopy

For all experiments, time-lapse images were acquired at indicated intervals for a minimum of 6 hr with an Olympus Fluoview (FV10i) confocal microscope at 37°C, 5% CO\(_2\). Magnifications were as follows: 10x magnification with 2x zoom for treatment protocols at 5-min intervals, and 10x magnification in slices at 10-min intervals. For higher resolution, 60x magnification was used for acquiring mitochondrial localization in migration INs at 10-min intervals. For slices, z stacks of 10 \(\mu\)m each were taken, capturing the full range of detectable GFP\(^+\) cells or DsRed cells within the slice. Slices were imaged for a minimum of 5 hr. Images of fixed explants cells and slices were taken on an Olympus Fluoview (FV10i) confocal microscope at 20x magnification. Mitochondria were localized within individual cells from 40-\(\mu\)m floating brain slices by collecting 1.5-\(\mu\)m z stacks in using the Olympus Fluoview (FV10i) confocal microscope at 60x magnification. Mitochondria were labeled with Tom20, and EGFP, driven by the Dlx5/6 promoter, was detected with the anti-GFP antibody. Images of calbindin-stained slices and were taken at 5 \(\times\) and 10x magnification every 5 \(\mu\)m for 15 \(\mu\)m on a Leica CTR600 fluorescent microscope.

Quantification

In all experiments, cells were selected at random using ImageJ’s grid plugin for all experiments unless indicated otherwise. The color-profiler ImageJ plugin was used to generate plots of fluorescence units. For fixed cells, mitochondrial area was calculated by thresholding images using ImageJ’s auto-local thresholding plugin (for invivo culture, Bernsen method, 15 pixels) or by color thresholding images for overlapping green and red pixels (for cells in fixed slices). Thresholded images were analyzed using the particle analyzer plugin to calculate mitochondrial area in subcellular regions. Distance of migration along the cortex of the 25 leading cells was measured as a percentage of the distance between the striatocortical notch and dorsal cortical curve and normalized to the average distance of wild-type littermates. Relative migration distance for explants was calculated from the explant edge to the position of the ten cells that had migrated the furthest. Values were normalized to averages of Ant1\(^{-/-}\) littermates. Cell migration speed was calculated as previously published (Lysko et al., 2011). Leading process orientation was calculated by designating cells into quadrants based on the orientation of their leading processes. Centrosome scores were determined by defining the anterior edge of the nucleus as zero and centrosomes positioned behind the leading edge of the nucleus as negative values. Centrosome position was measured from the posterior of the cell and represented as a percent of total cell length.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, four figures, and seven movies and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.03.024.

AUTHOR CONTRIBUTIONS

E.G.L. collected data, processed, and performed analysis. E.G.L., J.A.G., and S.A.A. contributed to experimental design and wrote the paper. J.A.G. and S.A.A. contributed equally to the design, execution and interpretation of all studies. D.C.W. and M.J.N. contributed to pharmacological study design and experimental interpretation. All authors discussed the results and commented on the manuscript.

ACKNOWLEDGMENTS

This work was supported in part by NIH grants NS21328, NS41850, NS070298 (to D.C.W.), NS46166 (to J.A.G.), Simons Foundation Grant 205844 (to D.C.W.), and by the RAF Penrose Endowed Chair (to S.A.A.).
REFERENCES

Supplemental Information

Differential Mitochondrial Requirements for Radially and Non-radially Migrating Cortical Neurons: Implications for Mitochondrial Disorders

Detailed methods:

Mouse Strains
CD1, or Dlx5/6-Cig mice (Stenman et al., 2003), were used for mitochondrial localization and pharmacological experiments. Ant1+/+; Ant1-/- mice on a C57BL6/NJ (Ronchi et al., 2013) strain were used as indicated. Both sexes were used for experiments. The Institutional Animal Care and Use Committee at the Children’s Hospital of Philadelphia, Philadelphia, PA, approved all studies.

Brain explant culture
For all in vitro experiments, explants were generated from at embryonic day 14.5. Embryonic brains were dissected on ice cold HBSS (Sigma), embedded in 4% low-melt agarose (Lonza) and sliced into 250 µm thick sections. The MGE was microdissected in DFS (DMEM:F12; Invitrogen, with 10% fetal bovine serum, 40 mM Glucose, 40µM L-Glutamine) and cut into ~200 µm cubes, and were placed in a gel of 35% acidic collagen (0.0035 N acetic acid in rat tail collagen; BD Pharmagen), 50% matrigel (BD Pharmagen), 15% DM (DM; glucose free DMEM (Invitrogen), N2 supplement (Gibco), +/- Glucose as indicated) and 5 mM HEPES. Explants and gel incubated at for 30 minutes at 37 °C 5% CO2 to set, and DM medium added. Explants were continually cultured in DM with glucose as indicated.

Brain slice culture
Brains were dissected on ice cold HBSS (Sigma), embedded in 4% low-melt agarose (Lonza) and sliced into 250 µm thick sections on a Lieca VT1200S vibratome, and placed on filter inserts (Millipore). Slices were covered with a stiff gel of rat tail collagen, 3.75% Sodium Bicarbonate, and 25% DM and incubated at 37 °C 5% CO2 in DFS for 20 minutes to recover. Slices were then placed in 5mM glucose DM +/- BA as indicated and imaged as described below.

Treatment protocols
For inhibition of oxidative phosphorylation, explants were cultured for 24 hours in DM with 35 mM glucose. Immediately prior to imaging, media was exchanged with DM with PBS vehicle, Oligomycin (Sigma), or Bongkrekic Acid (Enzo Life Sciences). We found a strain difference in response to treatment to BA. CD1 cells were treated with 0.5, 2.5, 5, and 50 µM BA, while Ant1+/+ and Ant1-/- were treated with 0.5 fM BA. For glucose deprivation and inhibition experiments, explants were cultured for 24 hours in glucose free DMEM (Invitrogen) plus N2 supplement (Gibco) with or without 10 mM sodium pyruvate (Sigma) or 5 mM Galactose (Sigma), +/- 2.5 µM BA. For treatment with 2-DG, explants were cultured for 24 hours with 5 mM glucose DM supplemented with 500 µM 2-DG (Sigma), with or without 10 mM sodium pyruvate or 5 mM galactose +/- 0.5 µM BA.

Histology and immunocytochemistry
Brains of E13.5, E16, or E18.5 embryos were dissected on ice cold Hanks and drop fixed into 4% PFA overnight. A Leica VT1200S vibratome was used to cut floating sections of E13.5 (40 µm), E16.5, or E18.5 brains (50 µm thick). Sections were blocked in 5% NGS, PBS-T and stained with anti-Calbindin D-28k (rabbit; Swant, 1:1000), Caspase-3 (rabbit; Abcam, 1:500), Ki67 (rabbit; Neomarkers, 1:300, 5 min antigen retrieval with 1mM EDTA at 42°C), anti-Tom-20 (rabbit; Santa Cruz, 1:500), anti-GFP (chicken; Invitrogen, 1:2000). Slices were incubated in primary antibody for 24-48 hours, washed and stained with secondary antibody for 1 hour at room temperature (goat anti-rabbit-biotin; Vector Laboratories followed by Streptavidin-Alexa 594; Invitrogen, or anti-rabbit-Alexa 594; Invitrogen anti-chick-Alexa 488; Invitrogen all at 1:2000). Nuclei were counterstained with DAPI.

MGE explants were fixed in methanol for 20 minutes at -20 °C for gamma tubulin staining, or for 12 minutes in 4% paraformaldehyde and PHEM buffer at 37 °C. After washing in 1x PBS, explants were stored in 1x PBS at 4 °C until staining. For staining, explants were treated with 1:50 collagenase (Roche) for 15 minutes, permeabilized for 15 minutes with 0.04% triton. Explants were blocked with 10% NGS for 1 hour at RT. Explants were incubated overnight at 4°C with primary antibodies anti-Tuj1 (rabbit; Neuronal CIII b-tubulin; Covance, 1:1000), anti gamma-tubulin (mouse; 1:200 Sigma), anti-GFP (chicken Invitrogen 1:200), or anti-Ant1 (rabbit). The Ant1 antibody was generated by Covance using the oligopeptide derived from the N-terminal sequences of Ant1 NH2-MGDQALSFLKDFLAG injected into rabbits (Graham et al., 1997). The antibody specificity was confirmed by western blot (Figure S3E).

Intrauterine electroporations
Embryos at either E14, or E14.5 were electroporated in utero as previously published (Nasrallah et al., 2012) with the following constructs: pCAG-IG (Addgene 11150; 2 µg/µL), pCAG-DsRed (Addgene 11151; 2 µg/µL), pDsRed2-mito (MitoDsRed; Clontech 632421; 0.5 µg/µL). For marking mitochondria in radially migrating neurons, and slice BA treatments, embryos were electroporated at E14 and harvested 48 hrs later. For assessing radial migration, embryos were electroporated at E14.5 and harvested at E18.5.

Live marking of mitochondria in vitro
To image mitochondria in migrating INs, explants from Dlx5/6\textsubscript{CIG} embryos were cultured for 24 hrs. Prior to imaging, cells were treated with 100 nM MitoTracker® Red CMXRos (Invitrogen) for 30 minutes in Opti-MEM (Invitrogen) with 10 mM glucose. Cells were then rinsed with PBS and supplied with fresh DM before imaging.

Microscopy

For all experiments, time lapse images were acquired at indicated intervals for a minimum of 6 hours with an Olympus Fluoview (FV10i) confocal microscope at 37°C, 5% CO\textsubscript{2}. Magnifications were as follows; 10X magnification with 2X zoom for treatment protocols in 5-minute intervals, and 10X magnification in slices in 10-minute intervals. For higher resolution, 60X magnification was used for acquiring mitochondrial localization in migration INs at 10-minute intervals. For slices, Z-stacks of 10 \(\mu \)m each were taken, capturing the full range of detectable GFP+ cells or DsRed cells within the slice. Slices were imaged for a minimum of 5 hrs. Images of fixed explants cells and slices were taken on an Olympus Fluoview (FV10i) confocal microscope at 20X magnification. Mitochondria were localized within individual cells from 40\(\mu \)m floating brain slices by collecting 1.5\(\mu \)m z-stacks in using the Olympus Fluoview (FV10i) confocal microscope at 60X magnification. Mitochondria were labeled with Tom20 and eGFP, driven by the Dlx5/6 promoter, was detected with the anti-GFP antibody. Images of calbindin stained slices and were taken at 5X and 10X magnification every 5 \(\mu \)m for 15 \(\mu \)m on a Leica CTR600 fluorescent microscope.

Quantification

In all experiments, cells were selected at random using ImageJ’s grid plugin for all experiments unless indicated otherwise.

Mitochondrial localization For mitochondrial localization live imaging experiments, all INs that were in focus for a cell migration cycle, had Mitotracker® uptake, and were healthy were counted. Unhealthy cells were considered those that had halted migration and displayed leaky Mitotracker® signal, and those that died over the course of imaging.

For radially migrating cells, all cells in the cortical plate that were in focus and expressing MitoDsRed were counted. The color-profiler ImageJ plugin was used to generate plots of fluorescence units. For fixed cells, mitochondrial area was calculated by thresholding images using ImageJ’s auto-local thresholding plugin (for invitro culture, Bernsen method, 15 pixels), or by color thresholding images for overlapping green and red pixels (for cells in fixed slices). Thresholded images were analyzed using the particle analyzer plugin to calculate mitochondrial area in subcellular regions.

Distance of migration of calbindin positive cells in cortex. The distance along the cortex of the 25 leading cells was measured as a percentage of the distance between the striato-cortical notch and dorsal cortical curve, and normalized to the average distance of wild type littermates.

Relative Migration Distance. Explants were cultured for 16 hours from Ant1+/+ and Ant1+/- individuals from three separate litters. The distance from the explant edge to the position of the 10 cells that had migrated the furthest was measured. Values were normalized to averages of Ant1+/+ littermates. A minimum of 5 separate explants were analyzed for each experiment, and a minimum of 50 cells were measured from each individual explant.

Cell migration characteristics. Cell migration speed was calculated as previously published (Lysko et al., 2011). For both explant and slice imaging, cells were selected at random and followed during the live imaging process using ImageJ Manual Tracking plugin. For in vitro experiments, a minimum of 25 cells per n were followed. For slice experiments, a minimum of 15 PNs and 20 INs were tracked per individual. For radially migrating cells, cells that were not in the cortical plate were excluded. For assessing tangential migration in slice culture for BA treatment, GFP+ cells that were purely in the radial phase of their migration were excluded. Direction changes were defined as any change in direction greater than 90 degrees. Both direction changes and trailing process length were manually measured. For Ant1 Dlx-GFPC\textsubscript{IG} experiments, a minimum of 20 cells per individual were selected, and migration rates were normalized to the average rate of littermate controls.

Leading process orientation. 25 cells per individual were selected at random as previously described. Cells were designated into quadrants for the orientation of their leading processes (Figure 3H, insert) Q1, dorsal, Q2, pial; Q3, ventral; Q4, ventricular orientation.

Centrosome score. The anterior edge of the nucleus was defined as zero, with centrosomes positioned behind the leading edge of the nucleus as negative values. Centrosome position was measured from the posterior of the cell and represented as a percent of total cell length.

Statistics. Prism 6 software was used for all statistical analysis. Data were tested for normality using either the K-S test or the D’Agostino & Pearson omnibus normality test. If the data were not normal, non-parametric analysis was utilized. \(p < 0.05 \) were considered significant. All values are represented as mean ± SEM unless otherwise indicated.
Figure S1, relates to Figure 1 and Movie S1

(A) Neurons were visually scored as matching or non-matching to morphology patterns seen in vitro with mitochondrial clustering in front of the nucleus, within the bleb, or the trailing process.

(B-D) Quantification of clustering of mitochondria in subcellular locations. Region I: trailing process (TP); II: overlapping nucleus (Nuc); III: 5 µm anterior to nucleus (5 µm AN); IV: cytoplasmic bleb (bleb); V: leading process (LP). Similar to in vitro data, clustering varied between IN morphologies. IN morphology 1 clustered in III, *p ≤ 0.029. IN morphology 2, clustered in IV, *p ≤ 0.022. The clustering of mitochondria within the trailing process of IN morphology 3 was not as distinct compared to in vitro data. Clustering was higher in region I compared to region II (p < 0.0001), most mitochondria were clustered in region III (p = 0.04). Bars represent median with Tukey distribution, dots represent calculations beyond 1.5 times interquartile range of the percent total mitochondrial area (%TMA) normalized to region’s percent of total cell area (%TCA). n ≥ 50 cells each morphology from 5 different individuals. Freidman’s test with Dunn’s correction.
(A) Oligomycin treatment reduced IN migration rates. (Oligo: p < 0.0001, N = 3 independent cultures, 150 cells each, Mann-Whitney). Mean distance for Oligomycin concentrations of 0 µM: 0.31 ± 0.01 and 0.02 µM: 0.068 ± 0.005, µm/min ± SEM.

(B) Representative phase image of IN cells treated with Oligomycin. White arrows = extended trailing processes.

(C) IN migration is not dependent on glycolysis, as OXPHOS substrate pyruvate (Pyr) is sufficient to rescue decreased migration from glucose deprivation, and inhibition with 2-Deoxyglucose (2-DG). Pyr = pyruvate, Gluc = glucose, 2-DG = 2-deoxyglucose, BA = bongkrekic acid. p ≤ 0.001 as indicated, n = 5 independent experiments, >75 cells each, Kruskall-Wallis with Dunn’s correction. Data not shown for Galactose.
Figure S3, relates to Figure 3 Ant1 is expressed in MGE derived INs.

(A) Ant1 expression is detectable in migrating Dlx5/6Cig INs in explant cultures. Scale bar = 20 µm.
(B) Western blot of whole brain lysate showing specificity of Ant1 antibody.
Figure S4, Relates to Figure 4. *Ant1*^{−/−} cortices display normal radial migration

(A) Representative max projection of confocal images of E14.5 cortices electroporated *in utero* with pCAG-IRES-GFP, marking radially migrating PNs. After 4 days, radial migration was assessed, and was normal in the cortices of *Ant1*^{−/−} embryos.

(B) Quantification of percent total GFP⁺ cells in defined bins dividing cortex: ventricular and intermediate zones, and 8 equally sized divisions of the cortical plate (VZ: IZ; 1-8). p > 0.5, n = 5 individuals for both genotypes, two-way ANOVA. Scale bar = 250 µm.

(C) Representative coronal sections from E18.5 *Ant1*^{+/+} and *Ant1*^{−/−} brains at similar anterior posterior levels showing Tbr1 (red) labeled cells normally positioned in the deeper cortical layers and neurons born on E14.5 (injection time for EdU, labeled in green) normally positioned in the outer cortical layers and above the Tbr1 labeled cells. All nuclei stained with DAPI (blue). No difference was observed (n=3, scale bar=500 µm)
Dynamic mitochondrial localization in migrating INs within whole brain slices. Confocal immunofluorescence images of mitochondria in migrating INs *in situ* displaying varying localization patterns according to morphology. (IN; 1-3) morphologies displayed during migration. Outline of cell (yellow dotted line), Cytosol (GFP), mitochondria within GFP cells (white), mitochondria (Tom20), nuclei (DAPI). Scale bar = 10 µm.
Dynamic mitochondrial localization in dissociated migrating INs. Time-lapse imaging of a migrating interneurons treated with Mitotracker® Red CMXRos. 1 frame is 10 minutes, 3 frames per second (fps); scale bar, 10 μm. Relative fluorescence of mitochondrial signal and cytosolic GFP represented in ImageJ color plot profile.
Supplementary Movie 3 Relates to Figure 1

Restricted mitochondrial localization in migrating PNs. Time-lapse imaging of a radially migrating pyramidal neuron expressing pCAG-IG and MitoDsRed in slice culture. 1 frame is 10 minutes, 3 fps; scale bar, 10 µm. Relative fluorescence of mitochondrial signal and cytosolic GFP represented in ImageJ color plot profile.
Supplementary Movie 4 Relates to Figure 2

Oligomycin reduces IN migration in vitro. Time-lapse imaging of migrating interneuron \textit{in vitro} treated with vehicle (PBS), or Oligomycin (0.02 µM). 1 frame is 5 minutes, 3 fps; scale bar, 40 µm.
Bongkrekic Acid reduces IN migration in vitro. Time-lapse imaging of migrating interneuron *in vitro* treated with vehicle (PBS), or BA (0 µM, 2.5 µM, 5 µM). 1 frame is 5 minutes, 3 fps; scale bar, 40 µm.
Abnormal tangential but normal radial migration in slice cultures treated with Bongkrekic Acid. Slice cultures treated with BA (20 μM right) versus vehicle alone (left) display abnormal interneuron migration, and normal radial migration in situ. 1 frame is 10 minutes, 3 fps; scale bar, 250 μm.
Ant1⁻/⁻ INs display abnormal migration in situ. Time-lapse imaging of Ant1⁻/⁻ and Ant1⁺/⁺ GFP⁺ migrating interneurons in slice culture. 1 frame is 10 minutes, 3 fps; scale bar, 250 µm.